SAUERSTOFF FÜR DIE MOTORISCHE NUTZUNG VON SCHWACHGASEN

R. Kriegel

Hochtemperatur Separation und Katalyse, Fraunhofer IKTS, Hermsdorf

Internationale Bio – und Deponiegas Fachtagung "Synergien nutzen und voneinander lernen X" 19. / 20.IV.2016

OUTLINE

- 1. Einleitung
- 2. Material Eigenschaften
- 3. Membran Komponenten
- 4. Prozesvarianten

- 5. Produktion von reinem Sauerstoff
- 6. O₂ für Verbrennungsprozesse
- 7. Zusammenfassung
- 8. Ausblick

Einleitung: Abteilung Hochtemperatur Separation und Katalyse

- Katalysatoren auf Basis von Mischoxiden
- Sauerstoff-Speichermaterialien (OSM)
- Gemischt leitende Membranen (MIEC)

Einleitung: Sauerstoff - Produktion und Anwendungspotential

Globale Produktion^{1,2}:

≈ 200*10⁶ t/a = 140*10⁹ m³/a

■Verbrennungseffizienz[↑], CCS (Oxyfuel), chemische Produkte, Vergasung ...

Einleitung: Mischleiter - MIEC - <u>Mixed Ionic Electronic Conductor</u>

Nernst-Einstein

$$\mathbf{j}_{O2}$$
 $\sigma_a \approx \sigma_i \mathbf{P}[\mathbf{V}_O] \ (\sigma_e >> \sigma_i)$
stabile **MIEC** mit hohem **D**!

 $j_{O2} \sim Inp_{O2}$

- hohe O₂-Partialdruck-Verhältnisse (durch O₂-verbrauchende Reaktionen)
- hohe Materialbelastungen
- j₀₂ ~ 1/x (Membrandicke)
- asymmetrische Membranen (dünne Trennschicht auf porösem Support)
- begrenzender O₂–Oberflächenaustausch (kritische Schichtdicke)

Materialeigenschaften: **MIEC-Eigenschaften und Modellierung - Überblick**

IKTS

6

Membrankomponenten: Vergleich hinsichtlich der O₂-Produktion

Stand der Technik am Fraunhofer IKTS:

steifplast. Extrusion: monolithische Rohre/Kapillaren

R&D: fortgeschrittede Membranen:

■höherer O₂-Fluss und Packungsdichte

a o 10 11 12 11 14 15 1a 17 1a 17 26 21 22 33 a 2

asymmetrisch: dünne Trennschicht + poröser Support

BSC

7-Kapillarbündel mit O₂-Entnahme-Rohr¹

- Mehrkanalrohre und Kapillarbündel
- Kombination davon

¹Schulz, M., Pippardt, U., Kiesel, L., Ritter, K., Kriegel, R., AlChE Journal 58 (2012) 10, p. 3195 – 3202; ² Pippardt, U., Böer, J., Kiesel, L., Kircheisen, R., Kriegel, R., Voigt, I.: AlChE Journal 60 (2014) 1, p. 15 - 21

© Fraunhofer

💹 Fraunhofer

Prozessvarianten: MIEC für die O₂-Separation

© Fraunhofer

8

IKTS

Produktion von reinem Sauerstoff: Demonstrations- und Pilotanlagen

¹ Kriegel, R., DKG Handbuch Technische Keramische Werkstoffe, HvB-Verlag Ellerau (2010), p. 1-46; ² R. Kriegel, H. Klefenz, I. Voigt, 13. ICIM, 06.-09. 07. 2014, Brisbane, Australia; ³ Achema 2015

© Fraunhofer

Produktion von reinem Sauerstoff: Überdruck und Vakuum-Betrieb

Experten-Ansicht: eine nicht Prozess-integrierte MIEC-O₂-Anlage ist nicht wettbewerbsfähig!

Fraunhofer

10

Produktion von reinem Sauerstoff: Energieverbrauch des MIEC-Vakuumbetriebs

Berechnung für definierte Betriebsbedingungen:

- BSCF, 850°C, Vacuumpumpe mit 0,018 kWh/m³
- variierende Wärmerückgewinnung

Energie-Beiträge:

- Wärmeverluste (~ Q_{Luft}), O₂-Kompession (~ 1/ Q_{Luft})
- gekoppelt über O₂-Abtrenngrad

Bedingungen für effizienten Betrieb:

- 30 % 70 % O₂-Abtrennung, > 92% WRG!
- effiziente (< 0.4 kWh/m³) stand-alone O₂-Produktion¹

Kostensenkungs-Potential: Substitution von Strom durch Gas oder Abwärme

11

Sauerstoff für Verbrennungsprozesse: Einsatz thermischer Energy für die O₂-Separation

Oxyfuel-Verbrennung:

- ■Wärmeverluste↓
- ■Wärmeübergang↑

Einsparung

(bis 50 %, abhängig von Abgastemperatur, O₂-Gehalt, Vorwärmung)

■bei Abgastemperaturen > 900 °C

Beheizung der O₂-Membranen

■verbleibender **Electrizitätsbedarf** für Gaskompression:

0,2 – 0,25 kWh/Nm³ O₂ kryogen: > 0,38 PSA > 0,9

CO₂ + 2H₂C

waste heat

CO₂ + 2H₂O

6 N

Demuth, M.: Oxygen enhanced Oxipyr[®] combustion. 1st Int. Oxyfuel Messer Workshop Oxygen Enhanced Com-bustion in Steelmaking Industry, 05.– 07. 05. 2015, Gumpoldskirchen, Austria

12

Fraunhofer

Sauerstoff für Verbrennungsprozesse: Wirkungsgrad von Gasmotoren – O₂-Anreicherung

O₂-Anreicherung für Gasmotor (BHKW): gleiche Energiemenge in weniger Gas sehr hohe T \rightarrow höhere p, η_{Carnot} ■Kühlung: + H_2O (g, l) – hohe T → w_{exp} . ↑ sekundäre Effekte: mehr Brenngas (Wärme) im gl. Volumen höhere Leistungsdichte Kompensation niedriger Heizwerte verlängerte Schwachgas-Nutzung (Deponie-, Grubengas) ■reiner O₂: reines CO₂-Abgas (CCS & CCU) Dampf-Zugabe: weniger NO,

© Fraunhofer

🗾 Fraunhofer

IKTS

Sauerstoff für Verbrennungsprozesse: Wirkungsgrad von Gasmotoren für Schwachgas

© Fraunhofer

14

IKTS

Sauerstoff für Verbrennungsprozesse: Wirkungsgrad von Gasmotoren für Schwachgas bei O₂-Anreicherung

O₂ mittels MIEC-Membranen:

- Vakuumbetrieb immer 100 % O₂
- leichte Einstellbarkeit des O₂-Gehaltes durch Mischung von Luft und O₂

Berechnung für gegebenen Motor:

konstante Volumina und Wirkungsgrad

Kompensation des Heizwertes durch O₂

iterative Anpassung des O₂-Gehaltes Ergebnisse:

- Verstromung bis herab zu 12,6 % CH₄!
 - geringere Gehalten komprimierter O₂

© Fraunhofer

Sauerstoff für Verbrennungsprozesse: O₂-Anreicherung für ein BHKW

vorgegebene Werte:

■125 kW BHKW entsprechend Lit.1

Strompreis: 5 Ct./kWh

■PSA: **0,9**, Polymer: **0,35**, MIEC: **0,22** (kWh/Nm³ O₂)

Ergebnisse:

einsetzbar bis zu sehr niedrigen
CH₄-Gehalten

■verlängerte Verstromung

höchste Erlöse

■ansteigend mit sinkendem CH₄-Gehalt

© Fraunhofer

Zusammenfassung

O₂-Produktion:

einfach, energieeffizienter Vakuumbetrieb, >9500 h stabil

on-site O₂-Produktion ist bereits wettbewerbsfähig (besonders für Kleinverbraucher)

nächste Schritte:

- Nachweis der hohen Effizienz Projektende 05/17
- Serienproduktion zur Kostensenkung, Ausgründung
- Testen der Geräte: Krankenhäuser, Vergasung, Verbrennung...

weitere Entwicklungen:

- alternative Materialien f
 ür Membranreaktoren und chem. Reaktionen
- Neuartige Prozesses ohne Bedarf an Elektroenergie

Erhöhung des Wirkungsgrades von Verbrennungskraftmaschinen

Ausblick "Fester O₂" für die selbst-verdichtende Verbrennung (SPC)

höhere erreichbare Wirkungsgrade von Vkm

- Einsatz von "festem O₂" (OSM¹ oder MIEC-Membranen)
- weniger Energie w_{compr.} für Gaskompression, höhere p, T, w_{exp.}
- bis zu 80 % Carnot-Wirkungsgrad (Nutzarbeit)
- höhere Leistungsdichte (Brennraum-Volumen↓)
- einfacherer Aufbau von Motoren, Turbinen
- O₂ –Oberflächen-Austauschkinetikausreichend schnell?
- Langzeit-Stabilität?

Selbst-verdichtende Verbrennung für die Energieproduktion (biomass, coal, gases)

¹Kriegel, R., Lampinen, M. Kircheisen, R., Ristimäki, V., DE102013114852A1, 23. 12. 2013, WO2015096833A1, patent pending

18

Danksagung

19

ralf.kriegel@ikts.fraunhofer.de

